Modellbahn digital peter stärz

Dresdener Str. 68 – D-02977 Hoyerswerda – **2** = +49 3571 404027 – <u>www.firma-staerz.de</u> – <u>info@firma-staerz.de</u>

Bausatz Businterface für das Selectrix[®]-System

Businterface v1-2008

Schwierigkeitsgrad: leicht

mittel

schwierig

Das Businterface ist ein Modul zur Erzeugung des Selectrix-Busses mit integriertem Computer-Interface. Das Businterface ist die notwendige Digitalkomponente zur Realisierung des Schaltens und Meldens einer Modellbahnanlage über den SX-Bus in Verbindung mit einem Computer (über RS-232 bzw. COM) und entsprechendem Modellbahnsteuerungsprogramm (z.B. Railroad & Co.® TrainController™ oder Win-Digipet).

Besondere Merkmale

- Speziell für Selectrix®
- RS232-Schnittstelle
- Absicherung des SX-Busses mit 1,35A

Notwendige Fertigkeiten:

- Umfangreiches Bestücken und Löten der Platine

Besondere Merkmale.....

Inhaltsverzeichnis

Technische Daten	
Lieferumfang des Bausatzes	2
Zubehör und Erweiterungsmöglichkeiten	
Aufbauanleitung	
Bestückungsplan	
Fertig bestückte Leiterplatte	
Funktionsbeschreibung	4
Stromversorgung und Verdrahtung	4
Inbetriebnahme als Businterface	4
Inbetriebnahme als Interface	4
Status-LEDs	4
Aufstellungsort	4
Wartung und Pflege	4
Anschlussschema	4

Technische Daten

Maße

71,7mm x 84,6mm x 20mm

Stromversorgung

Ein externer Trafo wird benötigt, um den SX-Bus mit dem nötigen Signalstrom zu versorgen.

Wechselspannung 12V - 15V, 1,35A; bzw. Gleichspannung 15V - 20V, 1,35A Absicherung des SX-Busses mit 1,35A.

Anschlüsse

1x 2er Schraubklemme für Eingang

1x RS232 Schnittstelle

2x SX-Bus-Buchsen

Anzeige

6x LED: Statusanzeigen

Interface Übertragungsgeschwindigkeiten (Baudraten)

9600; 19200; 38400; 57600 Baud

Anschluss

Das Businterface wird mit einem Interface-Kabel geliefert, sodass es direkt mit dem PC verbunden werden kann.

An die SX-Bus-Buchsen können alle Busteilnehmer mit einem SX-Bus-Kabel angeschlossen werden.

Verschiedene Busse (PX, MX, SX0, SX1 usw.) dürfen niemals miteinander verbunden werden.

Buskabel dürfen nur in spannungslosem Zustand an- oder abgesteckt werden!

Funktionsweise

Das Businterface generiert das Selectrix-Signal und stellt es als Selectrix-Bus an den beiden SX-Bus-Buchsen zur Verfügung. Über den Selectrix-Bus können dann sämtliche Schalt- und Meldemodule (wie z.B. Belegtmelder und Funktionsdecoder) für das Selectrix-System angeschlossen und betrieben werden.

Zusätzlich kommuniziert das Businterface über die RS-232 Schnittstelle mit einem angeschlossenen Computer (COM-Schnittstelle). Es erfolgt ein ständiger Datenaustausch zwischen beiden Schnittstellen, sodass Änderungen am SX-Bus sofort am Computer und Änderungen ausgelöst vom Computer (durch ein geeignetes Programm) sofort auf dem SX-Bus über das Businterface umgesetzt werden.

Zur Ansteuerung durch den Computer wird ein entsprechendes Modellbahnsteuerungsprogramm benötigt.

Das Businterface arbeitet nach dem TRIX-Standard.

Zusammenbau

Das Businterface wird entsprechend der Beschreibung auf den folgenden Seiten komplettiert. Hierzu sollte ein Lötkolben mit ca. 12 bis 25 Watt oder eine Lötstation bei einer Temperatur von ca. 350°C und Kolophonium-Lot 0,5 oder 1,0mm verwendet werden. Spezialwerkzeuge sind zur Bestückung der Platine nicht erforderlich. Benutzen Sie kein Lötfett! Achten Sie darauf, dass der Lötvorgang zügig erfolgt um eine Überhitzung der Bauteile und damit deren Zerstörung zu vermeiden.

Nichtbenutzung

Bei Nichtbenutzung sollte das Businterface an einem trockenen und sauberen Ort aufbewahrt werden.

Lieferumfang des Bausatzes

Bitte überprüfen Sie zuerst, ob alle Bauteile entsprechend des folgenden Lieferumfangs vorhanden sind.

Allgemeine Bauteile:

- 1x Leiterplatte 72x85 mm
- 1x Festspannungsregler 7805
- 1x Gleichrichter B80C1500
- 1x PTC 1,35A
- 1x Taster
- 1x DIP-Schalter (4-fach)
- 6x LED, 3mm, rot
- 4x Schrauben
- 4x Distanzhülsen
- 1x SX-Bus-Kabel
- 1x RS-232-Kabel

Anschlussklemmen:

- 2x SX-Bus-Buchsen
- 1x 9-polige RS232-Buchse
- 1x 2er Klemme

ICs:

1x 28-poliger IC-Sockel

- 1x PIC18F2420
- 1x IC MAX232
- 1x IC LM339
- 1x IC 74HC367
- Transistoren:

1x BC557B

Kondensatoren (Markierung):

- 6x Elektrolytkondensator 47µF
- 1x Elektrolytkondensator 1000µF
- 6x Kondensator 100nF
- 2x Kondensator 220pF
- Dioden (Markierung):

1x BYW54

Widerstände (Markierung):

1x 470hm (gelb, lila, schwarz, silbern, braun) 2x 100Ohm (braun, schwarz, schwarz, schwarz, braun) 4x 220Ohm (rot, rot, schwarz, schwarz, braun) 1x 470Ohm (gelb, lila, schwarz, schwarz, braun) 2x 1kOhm (braun, schwarz, schwarz, braun, braun) 4x 2,2kOhm (rot, rot, schwarz, braun, braun) 4x 4.7kOhm (gelb, lila, schwarz, braun, braun) 3x 10kOhm (braun, schwarz, schwarz, rot, braun) 5x 22kOhm (rot, rot, schwarz, rot, braun)

1x Netzwerk 22kOhm

Zubehör und Erweiterungsmöglichkeiten

Es stehen folgende Zubehörartikel zur Verfügung:

Zubehör:

- USB-RS-232-Konverter: USB2-232 Art. 217 Gehäuse:

- Gehäuse für Businterface: G 523 B Art. 177

Bei Fragen schauen Sie auch bitte auf <u>www.firma-staerz.de</u> im FAQ-Bereich nach.

Aufbauanleitung

Beim Einbau der Bauteile sollte in der folgenden Reihenfolge vorgegangen werden. Alle Bauteile werden auf der Oberseite der Leiterplatte (mit der Bezeichnung "Top") so tief wie möglich eingesetzt und auf der Unterseite (Bezeichnung "Bottom") gelötet. Zum Abwinkeln der Bauteile sollte eine Abbiegevorrichtung (z.B. Conrad 425869) verwendet werden. Nach dem Anlöten der einzelnen Bauteile die überstehenden Enden mit einem Seitenschneider (nach Möglichkeit ohne Wate) kürzen.

Löten Sie sauber und sorgfältig!

1. Die Lötbrücke auf der Platinenunterseite nicht setzten!

2. Widerstände

Die Widerstände vor dem Einsetzen mit einem Abstand von 7,5mm mit der Abbiegevorrichtung abwinkeln. Zum leichteren Bestücken der Leiterplatte diese rechts und links durch z.B. zwei Bücher erhöhen. Die Widerstände in die dafür vorgesehenen Plätze einstecken. Die Farbringe sollten zur späteren Sichtkontrolle einheitlich auf derselben Seite der Widerstände sein. Ein Brettchen o.ä. darüber legen und die Leiter-platte mit den Widerständen und dem Brettchen umdrehen. Dadurch liegen die Bauteile optimal unter der Leiterplatte.

Zuerst jeweils eine Seite jedes Widerstandes anlöten und die Lage der Widerstände kontrollieren. Danach die zweite Seite der Widerstände anlöten.

R1-R4, R22	: 22kOhm	(rot, rot, schwarz, rot, braun)
R6:	470hm	(gelb, lila, schwarz, silbern, braun)
R5, R7:	100Ohm	(braun, schwarz, schwarz, braun)
R8-R9, R23	: 10kOhm	(braun, schwarz, schwarz, rot, braun)
R10-R13:	4,7kOhm	(gelb, lila, schwarz, braun, braun)
R16-R17:	1kOhm	(braun, schwarz, schwarz, braun, braun)
R18-R21:	2,2kOhm	(rot, rot, schwarz, braun, braun)
R24-R27:	220Ohm	(rot, rot, schwarz, schwarz, braun)
R28:	470Ohm	(gelb, lila, schwarz, schwarz, braun)

3. Diode D1

Die Diode mit der Kathode zum Festspannungsregler IC2_BI einsetzen. Die Kathode ist mit einem Strich markiert.

4. Sockel für PIC, ICs

Beachten Sie bei den ICs unbedingt die Richtung: Die Einkerbung muss mit der Abbildung bzw. mit der Leiterplatte übereinstimmen.

LM339N IC3: IC4: MAX232 IC5: 74HC367N Sockel: Sockel für IC1

5. Widerstandsnetzwerk RN1

Das Widerstandsnetzwerk muss mit der Beschriftung in Richtung des Sockels für den IC1 zeigend eingesetzt werden.

22kOhm: (9x-1-223) RN1

6. Drucktaster

SW2: entsprechend den Bohrungen einlöten

7. LEDs H3-H8

Die Kathode der LEDs ist auf der Seite zu der ieweiligen Beschriftung (gemeinsame Verbindung) einzusetzen. Der Anschluss der Kathode ist der kürzere Anschlussdraht der LED. Der Kragen der LEDs ist auf dieser Seite etwas abgeflacht.

8. DIP-Schalter SW1

Der DIP-Schalter wird entsprechend der Markierung direkt neben dem Taster SW2 eingesetzt. Die Beschriftung "ON" zeigt dabei zum Platineninnern.

Klemme, Transistor T1 und Gleichrichter B1

Setzen Sie zuerst die Klemme ein. Der Gleichrichter sollte etwa dieselbe Höhe haben, wie die Klemmen. Achten Sie besonders auf die Polung: Der Pluspol muss zum Widerstand R19 zeigen. Den Transistor mit der abgeflachten Seite (mit der Bedruckung BC557B) in Richtung der Elektrolytkondensatoren einbauen.

10. Keramikkondensatoren

C1-C5, C13:	100nF	(104)
C14-C15:	220pF	(221)

11. RS232-Schnittstelle, PTC

Die RS-232-Buchse entsprechend der Abbildung einlöten. Danach den PTC entsprechend einsetzen.

12. Elektrolytkondensatoren, Polung beachten!

Der Minuspol muss in Richtung der SX-Bus-C8-C11: 47µF: Buchsen eingesetzt werden, der Pluspol (längeres Beinchen) in Richtung der RS232-Schnittstelle.

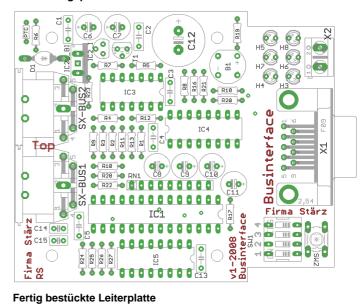
C6, C7: 47µF: Der Minuspol muss zum Kondensator C2 hin eingesetzt werden.

1000µF: Setzen sie diesen erst nach den SX-Bus-C12: Buchsen ein. Der Pluspol muss zum Platinenäußeren zeigen.

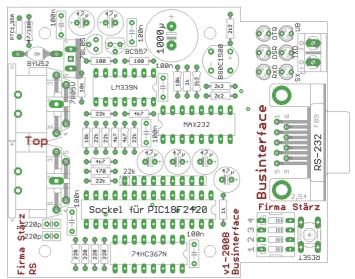
13. Spannungsregler IC2

Es wird der Spannungsregler IC2_BI (7805V) bestückt: mit der metallenen Seite in Richtung des IC2_I. IC2_I wird nicht bestückt.

14. SX-Bus-Buchsen


Unbedingt auch die Schirmungen (die großen Kontakte) der Buchsen großzügig verlöten.

15. Überprüfung; Einsetzen der PICs


Nach dem Einbau aller Teile kontrollieren, ob alle Bauteile entsprechend dem Bestückungsplan an der richtigen Stelle und in der richtigen Lage eingesetzt wurden. Insbesondere sollte auf der Unterseite der Platine kontrolliert werden, ob alle Lötstellen einwandfrei sind. Hierbei besonders auf ungewollte Lötbrücken zwischen Lötpads achten.

Nach durchgeführter Überprüfung kann der PICs mit der Kerbung wie im Bestückungsplan dargestellt, eingesetzt werden.

Bestückungsplan

Fertig bestückte Leiterplatte

Funktionsbeschreibung

Stromversorgung und Verdrahtung

Das Businterface muss durch einen geeigneten Trafo (ca. 12V-15V Wechselspannung oder ca. 15V-20V Gleichspannung, 1,35A) mit Strom versorgt werden.

Inbetriebnahme als Businterface

Stellen Sie zuerst mit den DIP-Schaltern 1 und 2 (siehe Tabelle) die gewünschte Übertragungsgeschwindigkeit für das integrierte Interface ein. In der Modellbahnsteuerungssoftware muss "TRIX Standard" als Übertragungsart und die gleiche, mit den DIP-Schaltern festgelegte, Übertragungsgeschwindigkeit ausgewählt werden.

DIP-Schalter 3 muss in Stellung "ON" sein.

Anschließend wird das Businterface mit dem SX-Bus- und dem RS-232-Kabel mit der Modellbahnanlage und dem PC verbunden. Optional ist ein Adapter von RS-232 nach USB verfügbar.

Inbetriebnahme als Interface

Vorgehen analog zur Inbetriebnahme als Businterface, jedoch muss DIP-Schalter 3 in Stellung "OFF" sein.

Anschluss SX-Bus

Der Anschluss des SX-Bus muss im spannungslosen Zustand der Zentrale erfolgen. Beide SX-Bus-Buchsen sind äquivalent, daher kann die zweite SX-Bus-Buchse als Verteiler genutzt werden.

Anschluss RS-232-Schnittstelle

Das RS-232-Kabel kann im laufenden Betrieb sowohl des Computers als auch der Modellbahnanlage (bei eingeschaltetem SX-Bus) erfolgen.

Taster (SW2)

Reset-Taster. Dieser setzt das Businterface zurück und lässt es neu starten. Diese Funktion wird prinzipiell nicht benötigt, stellt aber eine zusätzliche Sicherheit dar. Das Businterface erkennt eine Änderung der Baudrate an den DIP-Schaltern während des Betriebes selbst und führt automatisch einen Reset aus.

DIP-Schalter

Über die ersten beiden DIP-Schalter wird die Übertragungsgeschwindigkeit (Baudrate) des Businterfaces eingestellt:

1 OFF	2 OFF	9600 Baud
1 ON	2 OFF	19200 Baud
1 OFF	2 ON	38400 Baud
1 ON	2 ON	57600 Baud

Es wird eine Baudrate von 19200 empfohlen.

DIP-Schalter 3

Mit DIP-Schalter 3 wird die SX-Bus-Generierung gesteuert: Ist DIP-Schalter 3 in Position "OFF", so ist diese ausgeschaltet und das Businterface arbeitet als reines Interface. Es muss dann eine andere Zentraleinheit den SX-Bus genierieren (In Anschlussschema: Anschluss der Zentrale im roten Rahmen erforderlich).

DIP-Schalter 4

Mit DIP-Schalter 4 kann die Selectrix-Adresse 111 aktiviert werden. Ist DIP-Schalter 4 in Position "ON", wird diese Adresse für interne redundante Kontrollen benutzt und kann von keinem Modul am SX-Bus benutzt werden. Für den normalen Betrieb ist dieser Schalter also auf "OFF" zu stellen.

Status-LEDs

UB Spannung vorhanden

SX Businterface kann auf SX-Bus zugreifen und abfragen

DSR Steuer-Pins auf COM-Schnittstelle,

DTR Steuer-Pins auf COM-Schnittstelle

TXD Beim Blinken werden Daten zum PC gesendet

RXD Beim Blinken werden Daten vom PC empfangen

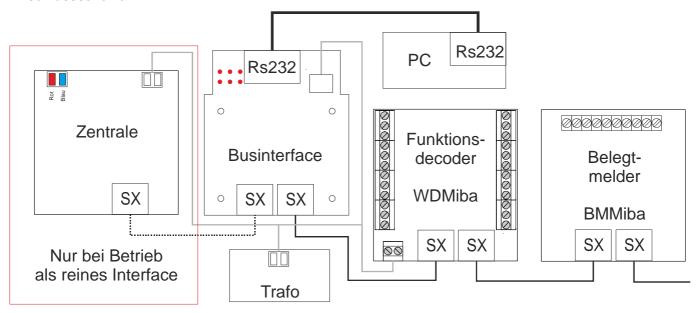
Aufstellungsort

Als Aufstellungsort ist ein trockener, gut belüfteter, sauberer und leicht zugänglicher Ort an oder in der Nähe von der Modellbahnanlage zu wählen.

Es muss gewährleistet werden, dass keine elektrisch leitenden Teile oder grober Dreck auf das Businterface fallen.

Das Businterface kann auch ohne Gehäuse aufgestellt werden. In diesem Fall wird es mit den mitgelieferten Kunststoffdistanzhülsen und den Schrauben auf einem nicht leitenden Untergrund aufgestellt.

Im laufenden Betrieb sind sämtliche elektrisch leitende Werkzeuge, Baugruppen, Kabel, etc. vom Businterface fern zu halten. Durch fahrlässige von außen (sowohl von der Ober- als auch von der Unterseite) verursachte Kurzschlüsse auf dem Businterface kann diese zerstört werden. In solch einem Falle erlischt jeglicher Garantieanspruch.


Wartung und Pflege

Sich verklumpender Staub in Verbindung mit kondensierenden Flüssigkeiten kann u. U. leitfähig werden und somit die Funktionalität des Businterfaces negativ beeinflussen. Das Businterface sollte daher hin und wieder von evtl. anfallendem Staub durch abpusten oder ggf. absaugen gereinigt werden.

Ist das Businterface in ein Gehäuse montiert, reduziert sich das Reinigen auf dieses.

Die Hinzunahme von Flüssigkeiten zur Reinigung jeglicher Art ist ausdrücklich untersagt.

Anschlussschema

Alle Marken und Warenzeichen sind Eigentum der jeweiligen Rechteinhaber

Modellbahn Digital Peter Stärz, Dresdener Str. 68, D-02977 Hoyerswerda Abbildungen und technische Angaben freibleibend. Änderungen und Irrtümer vorbehalten.